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Newton’s methed, finite volume discretization, and a staggered grid
are used to compute the steady state profiles of the two-dimensional
two-fluid Tokamak edge plasma fluid equatians. In this set of Huid
equations, the transpart coefficients are highly nonlinear functions of
the dependent variables, and mass and energy transfer due 10 atomic
reactions is included. The techniques of an adaptive damped iteration,
mesh sequencing, and reduced factorization are combined to increase
the radius of convergence and to accelerate convergence. These
techniques ar illustrated through a model problem. < 1693 Acagamic

Press, Inc.

L. INTRODUCTION

Advances in supercomputer memory and speed have
begun to make Newton's method an attractive choice for
two-dimensional computational fluid dynamics (CFD).
This has been scen in both the incompressible and com-
pressible flow communitics.

In the incompressible flow community Vanka and
Leaf [T, 2] have applied Newton's method to two-dimen-
sional laminar and turbulent recirculating Nows. In [1]
Newton’s method was compared to the well-known
segregated solution algorithm STMPLE [3] which uses
successive substitution linearization [4]. For driven cavity
and sudden expansion model problems, Newton's method
was shown 1o be faster by roughly a factor of five for various
Reynolds numbers and grid dimensions, demonstrating the
compulational speedup to be expected by more accurately
modeling the pressure velocity coupling. MacAurther and
Patankar [5, 6] have aplied Newton’s method and other
lincarization techniques, with a scarch parameter to a
driven cavity model problem and a0 natural convection
maodel problem, and compared these (o the SEMPLE and
SIMPLER [3] algorithms. 1t was shown thiat Newton's
method with a search parameter could achieve solutions to
the natural convection problem for Rayleigh numbers two

* Sandia National Laboratories, Division 6428, Albuquergque, NW
87185,

0021-9391/91 $5.00

Copyright 1© 1993 by Academic Press, Inc,
All rights of reproduction in any form reserved.

418

orders of magnitude greater than those achievable with
SIMPLE or SIMPLER, demonstrating the computational
robustness to be expected by more accurately modeling the
velocity—pressure—temperature coupling of the natural con-
vection problem. In both of these studies constant transport
coeflicients were used and the Yale sparse matrix package,
YSMP {7], was employed to factor and solve the Jacobian.

Venkatakrishnan [8, 97 has applied Newton’s method to
the compressible two-dimensional Euoler and Navier -Stokes
equations lor airfoil calculutions. In this work the ideas of
mesh sequencing and reduced factorization have been
applied to accelerate convergence and reduce the number of
Jacobian factorizations required onthe desired grid refine-
ment, Venkatakrishnan has used both a banded method
and YSMP to factor and solve the Jacobian. YSMP has an
advantage for the multiply connected grid required for some
airfoil computations because it does not require a banded
slructure,

We would also like to mention the successful application
of Newton's method to one-dimensional CFD with com-
plicated physics and chemistry. Winkler, Norman, and
Mihalis [107 have applied Newton's method to the
equations of adaptive-grid radiation hydrodynamics.
Smooke [117 has applied Newton’s method to the equa-
tions of laminar flames.

In this study we demonstrate the application of Newton’s
method to another field, namely the two-dumensional,
two-fluid equations which model the tokamak edge plasma.
This set of equations has transport coefficients which are
strong non-lincar functions of the dependent variables and
incorporates the difficult boundary condition of the plusma
sheath with self-consistent neutral particle recycling, Mass
and cuergy transfer duc to atomic rcactions arc also
inciuded.

The most widely used edge plasma code is B2 developed
by Braams [12], which uses a compressible form of the
SIMPLE aigorithm. B2 was the pioneering eflort in
two-dimensioual (wo-fluid edge plasma modeling and has
proven to be a uscful computational tool for this system of
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equations. The desire to more accurately model the physics
of the edge plasma has considerably increased the com-
plexity of the edge plasma equations. Attemps to extend B2
to a system of equations with significant concentrations of
radiating impurities or a system which includes fluid drifts
have met with only limited success [ 13, 147]. For this reason
it is desirable to develop a numerical method for the edge
plasma equations which eliminates most of the numerical
and physical assumptions of a SIMPLE algorithm, and one
such approach is presented here.

We will demonstrate the effects of an adaptive damped
iteration, mesh sequencing, and reduced factorization on
increasing the radius of convergence and accelerating
convergence of Newton’s method.

2. EDGE PLASMA FLUID EQUATIONS
AND THE MODEL PROBLEM

The tokamak edge plasma (scrape-off layer, boundary
layer) is that plasma which lies between the last closed
magnetic {lux surface, called the separatrix, and the vessel
wall. A poloidal cross section of the magnetically diverted
double null experiment ASDEX [167] can be seen in Fig. 1.
The edge plasma is the shaded region which surrounds the
core and impinges on the divertor plates. Energy and par-
ticles are transported into the edge region from the core
radially across the magnetic separatrix. These flows, once in
the edge region, are rapidly transported along the magnetic
field lines onto the divertor plates. The energy is deposited
on the divertor plates and the plasma ions are neutralized
and diffuse back into the plasma as atoms or molecules.
These neutrals are ionized by the plasma electrons and
charge exchange with plasma ions. The magnetic field is
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comprised of toroidal and poloidal components, with the
toroidal component the stronger of the two, The magnetic
field pitch, which is equal to the poloidal field divided by the
total field, defines a vector projection from the parallel
direction to the poloidal direction. For the model problem
[12, 17] the region ABCDEF is modeied as a rectangle with
the cartesian coordinates x and y representing the poloidal
and radial directions, respectively.

The fluid equations of the edge plasma are a simplifica-
tion of the Braginskii equations [18]. The assumptions are
V,=V,, le, ambipolar flow, and purely diffusive radial
transport. It is also assumed the neutrals which are
generated at the divertor plates can be modeled with a single
energy diffusion equation [17], and the effects of viscous
heating have been ignored. OQur problem is then modeled by
the following set of steady state equations:

continuity,
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FIG. 1.

ASDEX tokamak poloidal cross section.
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equation of state,

P.=nT, P,.=nT,.

€

(6)

Here # is the plasma density, i, is the neutral density, |, is
the velocity along the total magnetic field, B. T, is the ioen
temperature, 7, is the electron temperature, and 8_/B is the
magnetic field pitch, To close this set of equations we have

radial velocity,

Dma_n_
n dy’

(7)

poloidal velocity,

===
=gt

(8)

Note that in Eqs. (7) and (8) we have ignored the effects
of fluid drifts [19, 207. In this model the poloidal transport
coefficients are classical Braginskii [18] and the radial
transport coefficients are anomalous, ie., empirical. The
poloidal electron thermal conductivity is flux limited by the
electron thermal velocity to keep the electron diffusive heat
flux in a physically reasonable range [12,17]. In a nearly
collisionless plasma with steep temperature gradients, the
continuum formulation of the diffusive energy flux can be
unrealistic. Since diffusion is a random walk process, the
diffusive energy flux cannot exceed the energy flux that can
be convected at the local thermal speed of the particles.
We have

L4

K
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and

gn=02nT, /T, /m,.

The neutral diffusion coefficient is developed from diffusion -
theory assuming thermal equilibrium between neutrals and
plasma ions [17]. The functional dependencies of the
transport coefficients are:

{11)

X-direction (poloidai) transport,

TZ,S g.S

Y-direction (radial) transport,
K oC g n, K, oC x;m, 7, oC 7, nm;

with D, x:, %, 1., input empirical constants. The thermal
cquipartition coefficient is given by

2
m,n
Keg OC rTés (12)
and the neutral diffusion coefficient is defined as
T,
D = ! . 13
o 3nm({ovy, +{ovy.) (13)

The source and sink terms due to neutral ionization depend
on the ¢lectron impact ionization rate, {ov >, which is a
function of electron temperature,

3x10~ "2 m’ T. eV
S

o= =—— 14
(V=g @ (14)

The constants ¢, and ¢, represent the energy lost or gained
due to the electron impact of hydrogen atoms. We also
assume that the charge exchange rate, (ov}) ., is a constant
for this model problem, Equations (1) through (5), along
with the given transport coeflicients, represent a sirongly
coupled nonlinear system of fluid equations. As we see
below in the model problem, the boundary conditions at the
divertor plate, where the neutrals are produced, only serve
to increase the coupling and nonlinearity of the problem.
The geometry of the model problem is the region ABCDEF
of Fig. 1 modeled as a rectangle with x being the poloidal
coordinate and y being the radial coordinate. This can be
seen in Fig. 2. We use the following boundary conditions:

symmetry plane (AF),

an_ony oT, oT,

u =0, x ox  ox  ox ;
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FIG. 2. Model problem geometry.

vessel wall (FD),

Ony, L—y T,
-p, oy, EI
Y 03 T4y "o m;
core {AB),
1 -3 ano 7
=0, n=18x10"m™", a—y—=0, T,=T,=80¢V;

private flux (BC, I'; , = energy scale length),

with
Fi=(=75m/synT,, ,=(—150m/s)nT.,.
divertor plate (DC) (sheath boundary),

a B
ﬂ=_xn(;“

u) = C,= mAar T R

(TE+T¢’)/mis D

B B
0,=252nC, T q,=452nC.T.,

where
q;.=1.5mT,,—x, (9T, /0x).
The input constants are
D=2, =02, x,=40, n,=02m%/s B /B=0.06.

The boundary along the separatrix from the null point to
the divertor plate is called the private flux boundary. Along
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the private flux boundary a net loss of energy is assumed
with no net loss of particles. Along the vessel wall between
point E and D there is a net outflux of neutrals governed by
an albedo boundary condition. The boundary condition at
the plate is the most complicated and is arrived at from
plasma sheath theory [21]. Here the neutral flux is
assumed to be equal in magnitude and opposite in direction
to the plasma flux, corresponding to all plasma ions
neutralizing at the plate and forming a source of neutrals.

3. NEWTON’S METHOD

The solution of Egs. (1) through (5) with appropriate
boundary conditions is a difficult task. However, to
properly model the tokamak edge plasma we also need to
solve an equation for the electrostatic potential and include
E x B and diamagnetic fluid drifts in Eqgs. (7) and (8). 1t will
also be necessary to include impurity fluids, such as carbon
eroded from the divertor plates, in the model. For this
reason, it is desirable to develop a very robust nonlinear
solver for this system. By using Newton’s method and
solving all equations simultaneously, the least number of
physical and numerical assumptions possible are made.
The main challenge in using Newton’s method for two-
dimensional CFD, assuming the required memory is
available, is increasing the radius of convergence and
accelerating convergence so that the large Jacobian is
factored as few times as possible. Of course, for many
problems it may also be a challenge to keep the condition
number of the Jacobian in a reasonable range.

We use finite volume discretization on Eqgs. (1) through
(3} on a staggered grid with velocities at cell faces and
thermodynamic variables at cell centers. This produces a
nonlinear matrix equation:

A(x)=h, (15)

where X is our state vector and A is a function of the state
vector. In Newton’s method, Eq. (15) is approximated by a
first-order Taylor series giving

J dx =res, {16)

where the (i, j) element of the Jacobian matrix, J, is given
by

- dres(i)
dx(j)

J(@ f}= (17)

and

res=b— A(x) (18)
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is the residual. Equation {16) is then solved in the following
iterative fashion:

J* 5x* = res*

x5 tl=xf + 8x"

(19)
{20)

This is done until the norm of res* [alls below some
tolerance level with J and res being recomputed each time
x is updated.

Currently we employ banded Gaussian elimination to
solve the linearized problem. The LINPACK [24] routines
SGBFA and SGBSL are used. The storage required can be
computed using the grid dimensions, #x and ny, and the
number of conservation equations being solved, regq.
The total number of finite volume equations being
solved is nx = ny x neq. We form the Jacobian with j, the y
direction, being the fastest changing index to minimize the
bandwidth since, for our application, nx is always greater
than ny. The half bandwith, Abw, of our Jacobian is
given by (ny+ 1) * neg. The LINPACK routines require
(3« Abw+3) x nx xny * neq words of memory for the
matrix, the pivot vector, and the right-hand side.

It is known that the radius of convergence of Newton’s
method is inversely proportional toe the dimension of
Eq. (16) [22]. It is also known that an accurate initial
guess, x°, to the true solution, x, will greatly accelerate con-
vergence of Newton's method. Mesh sequencing is used to
take advantage of these two facts. We begin our computa-
tion on a grid which is coarser than the desired final resolu-
tion, but which is fine enough to capture the basic physical
structure of the solution. Starting from an initial guess on
the coarse grid, we expect to have an increased radius of
convergence, compared o starting with the same initial
guess on a much finer grid since the dimension of Eq. (16)
1s reduced. After converging to a solution on this grid, the
grid dimension is doubled and the converged solution is
interpolated up to the new grid, providing a much improved
initial guess for the new grid. This procedure is continued
until a grid of the desired refinement is reached, in a manner
somewhat analogous to the first upward cycle of a full
multigrid scheme [15], except that we solve the problem on
each grid of increasing resolution.

Because there is a limit on the coarseness of the initial
grid, we may still have a problem with a small radius of
convergence. To increase the radius of convergence further
for an initial guess, a damped iteration is employed. By a
damped iteration we mean Eq. (20) is altered to

x* Tl =x* 4 56xF, 2n

where s is a scalar less than or equal to one, There are a
variety of ways in which s can be defined. One way is to
define s so as to minimize the Euclidean norm of res 2217,
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which is closely related to the search parameter used by
MacArthur and Patankar [5,6]. This procedure will
increase in complexity as the complexity of res increases.
Since our residual vector is more complicated than those of
the model problems studied by MacArthur and Patankar,
we have opted for a simpier procedure similar to that used
by Winkler et al. [10]. In this procedure s is defined by

. . Xk Xk
s=min| l,min, ;  { —=11,
0X; j «

where the indices (7, f) run over all control volumes and the
index &k runs over all dependant variables, except velocity.
With this search parameter no thermodynamic variable is
allowed to change by more than a fixed fraction, «, in any
Newton iteration. This method also serves to prevent any
thermodynamic variable from becoming negative. As the
solution is approached and 6x becomes small, s will become
one and a full Newton update will be taken.

We also employ the idea of a modified Newton itera-
tion [4], referred to as reduced factorization. In Eq. (19)
the Jacobian is not evaluated and factored at every itera-
tion, but instead the LU factorization of a Jacobian may be
used two or more times in succession. This can save a tre-
mendous amount of CPU time since factoring J can repre-
sent as much as 95% of a Newton iteration. Smooke [11]
has developed a computable test which determines when a
new Jacobian needs to be computed and factored to ensure
that res — 0. Currently, we fix the frequency of computing a
new Jacobian and we compute 4 new Jacobian at every
iteration when the search parameter, s, is not equal to one.

For the above “standard” edge plasma model we use an
analytically defined Jacobian. Although this is a cumber-
some task to code and debug, especially because of the
boundary conditions, once successfully completed it saves
significant CPU time over numerically evaluating the
Jacobtan. Currently, our analytic Jacobian does not include
derivatives of the flux-limited electron conductivity. As we
move to a more complicated system of equations including
fluid drifts and impurities we well evaluate the Jacobian
numerically [23].

(22)

FIG. 3. Structure of nonuniform grid.
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4. RESULTS FROM MODEL PROBLEM

The madel problem as been chosen because it has been
part of two previous studies of edge plasma codes [12, 17].
We are most interested in demonstrating convergence
characteristics. The solution on the rectangle of Fig. 2 is
characterized by sharp radial gradients near the separatrix
and sharp poloidal gradients near the divertor plate. For
this reason we use a nonuniform grid shown in Fig 3.
This is a 14 x 5 grid which is the initial grid for our mesh
sequencing. To construct a 28 x 10 grid each control volume
is divided in half in both the x and y directions.

We first want to illustrate the performance that can be
expected in this type of problem., We follow a root mean
squared normalized residual for the system of finite volume
equations including the boundaries. The normalization is
such that when the residual for the dependent variable ¢ is
less than 1.0x 10~* we have d¢/¢ less than 1.0x107%
which we consider converged. Figure 4 shows the con-
vergence history for a flat initial profile on a 28 x 10 grid for
various o’s in Eq. (22). We can sece that «a=04 is an
improvement over a=0.2, but beyond that there is not
much difference. Also, we should point out that, if no
damping is used, divergence occurs. As we move to more
complicated physics such as radiating impurities [23] we
expect that a more restrictive value of o may be required
for convergence. It should also be noted that we do not
achieve quadratic convergence. This is because we have
omitted some of the more complicated derivatives from our
analytical Jacobian, and thus we have an approximate
Jacobian. Work on implementing an efficient numerically
evaluated Jacobian is currently underway.

Next, we want to illustrate the effect of mesh sequencing
and reduced factorization. A 56 x 20 grid and o = 0.4 will be
used for this. The Jacobian will be factored every iteration
when s in Eq. (22) is not equal to one, every other iteration
when s=1, and factorization will be completely frozen
when the residual is less than 5.0 x 1077, Figure 5 compares
the convergence history on the 56 x 20 grid for a single grid
computation and no reduced factorization to a mesh
sequencing computation using reduced factorization. In the
mesh sequencing computation the problem was first solved
on a 14 x5 grid and then a 28 x 10 grid to give the much
improved initial guess to the 56 x 20 grid problem seen in
Fig. 5. The convergence history for the mesh sequencing
problem required six fine-grid iterations for convergence;
however, the Jacobian was only factored on three of these
iterations. The total CPU time required on the 14 x 5 and
28 x 10 grids was equivalent to the cost of one fine-grid
iteration. Thus a converged solution on the 56 x 20 grid,
using mesh sequencing and reduced factorization, required
four fine-grid iterations, compared to the 38 iterations
required for the single grid computation. The actual Cray 2
CPU time for these two runs using standard LINPACK
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banded solvers was 26 and 250 s. Thus mesh sequencing and
reduced factorization represent an order of magnitude in
computational speedup for this model problem.

The solution profile of this model problem will now be
examined. Figures 6 through 9 are contour plots of density,
parallel Mach number, ion and electron temperature on a
36 x 20 grid using upwind differencing for convection. The
plots show the typical results [12, 17] of density buildup
near the divertor plate, sharp radial temperature gradients
near the separatrix, sharp poloidal gradients in tem-
perature, density, and Mach number near the divertor plate,
and a sone of flow reversal near the divertor plate caused by
the neutral recycling. We will now double the grid dimen-
sion in both directions to 112 x 40. Figures 10 and 11 are
the contour plots of density and parallel Mach number,
These plots show very little difference from the 56 x 20
results. Both these sets of results agree well with the results
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FIG. 10. Density on 112 x 40 grid.
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of Vold [17], who also solves a neutral diffusion equation.
Vold computed a peak density near the plate of
4.5 x 10 m ™7, where we have a peak density near the plate
of 50 =10 m~3 The same computation of Braams [12]
assumed a fixed ion and electron temperature of 2 eV at the
wall and used a different neutral model. In this computation
the peak density near the plate was 5.5 x 10" m —*. It should
be pointed out that both Braams and Vold used the power
law differencing scheme of Patankar [ 3] for the convection
diffusion operators while we have used upwind differencing
for convection and central differencing for diffusion.

5. CONCLUSIONS

We have demonstrated that Newton’s method coupled
with a damped iteration, mesh sequencing, and reduced fac-
torization is a CPU-efficient solution procedure for the non-
linear coupled system of fluid equations of the Tokamak
edge plasma. Tt is a very robust scheme since it makes the
fewest possible numerical and physical assumptions, but it
is limited by memory requirements. To store and factor the
Jacobian for the 112 x40 grid using LINPACK-banded
solvers requires approximately 15 megawords decimal on
the Cray 2. In the future we will examine reducing this
requirement by moving to a more memory-efficient large
sparse-matrix package such as YSMP or MA32 [25].

Future development of this tool will involve curvilinear
orthogonal coordinates, automation of the reduced fac-
torization, implementation of an efficient numerically
evaluated Jacobian, and the inclusion of advanced physics
such as fluid drifts and radiating impurities.
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